Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Prediksi Harga Bahan Pokok Nasional Jangka Pendek Menggunakan ARIMA

Mohammad Arif Rasyidi    

Resumen

Abstrak? Fluktuasi harga bahan pokok yang tidak terkendali dapat menyebabkan kerugian bagi konsumen maupun produsen. Salah satu langkah untuk mengatasi permasalahan tersebut yaitu dengan membuat prediksi harga yang akurat sehingga tindakan preventif dapat dilakukan untuk meminimalkan gejolak harga. Dalam studi ini, ARIMA digunakan untuk memprediksi harga bahan pokok nasional dalam jangka pendek. Data harga harian dari dua belas bahan pokok pada empat horizon prediksi (1 hingga 30 hari ke depan) digunakan untuk menguji kinerja ARIMA dalam memprediksi harga bahan pokok. Hasil eksperimen menujukkan bahwa model ARIMA yang dihasilkan mampu memprediksi harga dengan tingkat error rata-rata sebesar 2.22%. Kata Kunci? ARIMA, Bahan Pokok, Prediksi, PeramalanAbstract? Uncontrolled price fluctuation of basic commodities can harm both consumers and producers. One way to overcome the problem is by making accurate price prediction so that preventive actions can be conducted to minimize the price fluctuation. In this study, ARIMA is used to make short-term price prediction of national basic commodities. Daily pricing data of twelve commodities in four prediction horizons (1 to 30 days ahead) is used to test the performance of ARIMA in predicting the commodity prices. The experimental results showed that the ARIMA model was able to predict the price quite accurately with an average error rate of 2.22%. Keywords? ARIMA, Basic Commodities, Forecast, Prediction

Palabras claves

 Artículos similares

       
 
Kostiantyn Medvediev, Anna Kharchenko, Anzhelika Stakhova, Yurii Yevseichyk, Vitalii Tsybulskyi and Adrián Bekö    
The proposed methodology aims to determine and forecast the technical condition of bridge elements, which could serve as an advanced engineering tool for assessing reliability and durability. It is developed based on fundamental studies that synthesize t... ver más
Revista: Infrastructures

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Qian Liu, Xiaofeng Zhao, Jing Zou, Yunzhou Li, Zhijin Qiu, Tong Hu, Bo Wang and Zhiqian Li    
The Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST) model serves as the foundation for creating a forecast model to detect lower atmospheric ducts in this study. A set of prediction tests with different forecasting times focusing on the South C... ver más

 
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You    
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr... ver más

 
Yuxiu Liu, Xing Yuan, Yang Jiao, Peng Ji, Chaoqun Li and Xindai An    
Integrating numerical weather forecasts that provide ensemble precipitation forecasts, land surface hydrological modeling that resolves surface and subsurface hydrological processes, and artificial intelligence techniques that correct the forecast bias, ... ver más
Revista: Water