Resumen
Improving the aircraft?s fuel efficiency is one of the main requirements for prospective and modernized aircraft. This paper reports the assessment of change in aerodynamic quality resulting in the improved fuel efficiency of a long-range aircraft when using promising means to enhance aerodynamic quality. These means include the abandonment of the mechanization of wing edges and conventional controls through the use of an adaptive wing, the artificial laminarization of the flow around the elements of a glider, the application of winglets. The abandonment of conventional wing controls and wing mechanization is predetermined by the need to ensure a seamless surface of the glider elements to prevent the premature turbulization of the flow that consequently leads to a decrease in the profile drag of an aircraft. The use of winglets is aimed at reducing inductive drag. Determining a change in the aircraft?s fuel efficiency would make it possible to estimate a change in the operating costs during its life cycle.The study employed the known modular software complex «Integration 2.1». The engineering and navigational calculation was performed for a typical flight profile of a long-range aircraft. The possibility of reducing fuel consumption by up to 20 % has been shown. The largest impact on the decrease in fuel consumption is exerted by the flow laminarization on the surface of the glider elements; the reduction in fuel consumption was 17.1 %. The abandonment of mechanization and ailerons decreases fuel consumption by 3.9 %, while the abandonment of ailerons, slats, and flaps reduces fuel consumption by 0.4, 1.5, and 0.4 %, respectively. The use of spiroid winglets made it possible to reduce fuel consumption by 1.95 %