Resumen
Abstract: Pemasaran langsung adalah proses mengidentifikasi potensi pembeli produk tertentu dan mempromosikan produk dengan sesuai. pelaksanaan pemasaran langsung dari waktu ke waktu menghasilkan data dan informasi dalam bentuk laporan yang perlu di analisis oleh manajer dalam rangka mendukung keputusan. Namun itu adalah tugas yang sulit bagi manusia untuk menganalisis data yang kompleks yang luas. Kesulitan ini menyebabkan perkembangan teknik intelejen bisnis, yang bertujuan mengklasifikasi pengetahuan yang berguna untuk mendukung pengambilan keputusan. Metode support vector machine mampu mengatasi masalah yang berdimensi tinggi, mengatasi masalah klasifikasi dan regresi dengan linier ataupun nonlinier kernel yang dapat menjadi satu kemampuan algoritma pembelajaran untuk klasifikasi serta regresi, namun support vector machine memiliki masalah dalam pemilihan parameter yang sesuai. Untuk mengatasi masalah tersebut di perlukan metode algoritma genetika untuk pemilihan parameter yang sesuai pada metode support vector machine. Beberapa eksperimen dilakukan untuk mendapatkan akurasi yang optimal. Hasil penelitian menunjukan, eksperimen dengan menggunakan metode support vector machine dan algoritma genetika yang digunakan untuk melakukan optimasi parameter C, ? dan e dengan tiga jenis kernel. Kernel pertama tipe kernel dot dengan akurasi sebesar 85,59%, AUC sebesar 0,911 yang kedua tipe kernel radial dengan akurasi sebesar 98.89%, AUC sebesar 0,981 dan yang ketiga dengan tipe kernel Polynomial dengan akurasi sebesar 98.67% dan AUC sebesar 0.938. Hasil eksperimen tersebut menunjukan pengujian data set menggunakan penerapan algoritma genetika pada support vector machine menunjukan hasil yang lebih akurat untuk prediksi pemasaran langsung..