Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

GROUNDWATER MODELING IN THE COCHABAMBA VALLEY USING MODFLOW

Jenny T. Saavedra    
Laura A. Rosales    
Oliver C. Saavedra    

Resumen

In the Cochabamba metropolitan area, 65% of water for human consumption comes from groundwater extracted from the west side of the Central Valley. There has been an intense exploitation in the area with growth of operating wells. The objective of this study is to update and extend well monitoring, and improve understanding of groundwater flow through a hydrogeological model. The study area is an attractive region for groundwater exploitation due to the presence of an alluvial fan to the north that encourages the recharge of the aquifer. The MODFLOW computer package has been used for the modeling, using hydrogeology data of precipitation, temperature, evapotranspiration, stratigraphic profiles, and piezometric levels. As for latter, measurement campaigns were carried out at identified wells within the study area. The study area is made up of unconfined aquifers with high piezometric levels. The results of the calculated heads against the observed ones in the calibration process, gave a correlation coefficient of 0.76 and a root mean square (RMS) of 6.2 m. The model was simulated at steady state, showing a balance without evidence of exploitation, with an input of 77 m3 to the system. The main flow direction is from north to south with evident changes in direction due to the presence of rivers. The average level of the water table is 4.9 m below the surface in the southern zone and 130 m below the surface in the northern zone. The water balance generated by the model presents an input to the system of river infiltration and recharge. The output of the system is mainly due to evapotranspiration.

 Artículos similares

       
 
Zhaoxin Wang, Tiejun Wang and Yonggen Zhang    
Knowledge of both state (e.g., soil moisture) and flux (e.g., actual evapotranspiration (ETa) and groundwater recharge (GR)) hydrological variables across vadose zones is critical for understanding ecohydrological and land-surface processes. In this stud... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water