Resumen
The prospects of hybrid laser-plasma cutting of metals have been justified, a design of an integrated plasmatron for hybrid cutting was proposed and the results of laser-plasma cutting of carbon sheet structural steels using such an integrated plasmatron were forecasted. It was shown that in order to minimize losses of laser radiation and obtain maximum penetration, it is advisable to assemble the integrated plasmatron according to a coaxial scheme with an axial arrangement of laser radiation and a minimum inclination of non-consumable electrodes (one or more), the distance from the working end of which to the axis of the laser beam should lie in the range of 2...3 mm. The diameter of the plasma-forming nozzle should lie within 2?5 mm and depth of focus under the surface of the cut sheet during hybrid cutting should be 1?2 mm. To simulate the processes of laser, plasma, and hybrid cutting, the SYSWELD software package was used which became possible due to taking into account the characteristic for cutting effect of removing sections of molten material in the cutting zone, performed by replacing the maximum overheating temperature during the calculation with the initial temperature (20 °C). The main parameters of the regimes of laser-plasma cutting were established which has made it possible to obtain minimum HAZ size with cut quality approaching that of the laser cut. At the same time, hybrid cutting requires an energy input of approximately half that of the air-plasma one. An increase in the speed of hybrid cutting by increasing the pressure and consumption of working gases makes it possible to compare energy input with the same indicator of gas laser cutting with more than a three-fold increase in the productivity of the process