Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

NEURAL NETWORK FORECASTING OF ENERGY CONSUMPTION OF A METALLURGICAL ENTERPRISE

Anna Bakurova    
Olesia Yuskiv    
Dima Shyrokorad    
Anton Riabenko    
Elina Tereschenko    

Resumen

The subject of the research is the methods of constructing and training neural networks as a nonlinear modeling apparatus for solving the problem of predicting the energy consumption of metallurgical enterprises. The purpose of this work is to develop a model for forecasting the consumption of the power system of a metallurgical enterprise and its experimental testing on the data available for research of PJSC "Dneprospetsstal". The following tasks have been solved: analysis of the time series of power consumption; building a model with the help of which data on electricity consumption for a historical period is processed; building the most accurate forecast of the actual amount of electricity for the day ahead; assessment of the forecast quality. Methods used: time series analysis, neural network modeling, short-term forecasting of energy consumption in the metallurgical industry. The results obtained: to develop a model for predicting the energy consumption of a metallurgical enterprise based on artificial neural networks, the MATLAB complex with the Neural Network Toolbox was chosen. When conducting experiments, based on the available statistical data of a metallurgical enterprise, a selection of architectures and algorithms for learning neural networks was carried out. The best results were shown by the feedforward and backpropagation network, architecture with nonlinear autoregressive and learning algorithms: Levenberg-Marquard nonlinear optimization, Bayesian Regularization method and conjugate gradient method. Another approach, deep learning, is also considered, namely the neural network with long short-term memory LSTM and the adam learning algorithm. Such a deep neural network allows you to process large amounts of input information in a short time and build dependencies with uninformative input information. The LSTM network turned out to be the most effective among the considered neural networks, for which the indicator of the maximum prediction error had the minimum value. Conclusions: analysis of forecasting results using the developed models showed that the chosen approach with experimentally selected architectures and learning algorithms meets the necessary requirements for forecast accuracy when developing a forecasting model based on artificial neural networks. The use of models will allow automating high-precision operational hourly forecasting of energy consumption in market conditions.

 Artículos similares

       
 
Xinyi Meng and Daofeng Li    
The explosive growth of malware targeting Android devices has resulted in the demand for the acquisition and integration of comprehensive information to enable effective, robust, and user-friendly malware detection. In response to this challenge, this pa... ver más
Revista: Applied Sciences

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Song Xue, Jingyan Chen, Sheng Li and Huaai Huang    
Early warning of safety risks downstream of small reservoirs is directly related to the safety of people?s lives and property and the economic and social development of the region. The lack of data and low collaboration in downstream safety management of... ver más
Revista: Water

 
Ahmed Skhiri, Ali Ferhi, Anis Bousselmi, Slaheddine Khlifi and Mohamed A. Mattar    
A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term ave... ver más
Revista: Water

 
Donghae Baek, Il Won Seo, Jun Song Kim, Sung Hyun Jung and Yuyoung Choi    
The dispersion coefficients are crucial in understanding the spreading of pollutant clouds in river flows, particularly in the context of the depth-averaged two-dimensional (2D) advection?dispersion equation (ADE). Traditionally, the 2D stream-tube routi... ver más
Revista: Water