Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

IMPROVING THE EFFICIENCY OF HIGH-SPEED MILLING OF THIN-WALLED ELEMENTS OF PARTS OF COMPLEX GEOMETRIC SHAPES

Anton Germashev    
Victor Logominov    
Yelena Kozlova    
Vladimir Krishtal    

Resumen

Thin-walled elements of complex geometric shapes are widely used in the aerospace and other industries. They are obtained by various methods of machining using modern numerically controlled machines. The fundamental factors for manufacturing of parts are the productivity and machining quality. The subject matter of the article is the vibration during high-speed milling of thin-walled elements of parts of complex geometric shapes. The aim of the article is to determine the possibility of increasing the efficiency of high-speed milling of thin-walled parts by finding vibration-proof processing conditions. To achieve the goal, the following tasks have been set and implemented: considering the features of high-speed milling of thin-walled elements of parts with complex geometric shapes, developing a technique for investigating the milling process, and identifying stable machining conditions for high-speed milling of thin-walled components. The methods of oscillation fixation during machining and statistical analysis of experimentally obtained results are used. The following results are obtained: the design of the experimental bench is suggested to study the process of milling thin-walled elements of parts, the technique of obtaining a quantitative characteristic of the milling conditions, which is based on determining the position of a part at the moment when a milling tooth is cutting into it is offered, and the stable machining conditions for high-speed milling of thin-walled elements of parts are determined. Conclusions. The decisive role of the spindle rotational velocity in achieving a low vibration level has been experimentally proven, under the conditions of high-speed milling in a vibration-resistant range of spindle velocities both the radial depth and the feed can be increased without losses in the quality of machining.

 Artículos similares

       
 
Ismael Orozco, Félix Francés and Jesús Mora    
The success of hydrological modeling of a high mountain basin depends in most case on the accurate quantification of the snowmelt. However, mathematically modeling snowmelt is not a simple task due to, on one hand, the high number of variables that can b... ver más
Revista: Water

 
Ludek Bures, Petra Sychova, Petr Maca, Radek Roub and Stepan Marval    
An appropriate digital elevation model (DEM) is required for purposes of hydrodynamic modelling of floods. Such a DEM describes a river?s bathymetry (bed topography) as well as its surrounding area. Extensive measurements for creating accurate bathymetry... ver más
Revista: Water

 
Jian Hu, Da Lü, Feixiang Sun, Yihe Lü, Youjun Chen and Qingping Zhou    
Soil moisture is a central theme in eco-hydrology. Topography, soil characteristics, and vegetation types are significant factors impacting soil moisture dynamics. However, water loss (evapotranspiration and leakage) and its factors of the self-organized... ver más
Revista: Water

 
Daniel Althoff, Lineu Neiva Rodrigues and Demetrius David da Silva    
Small reservoirs play a key role in the Brazilian savannah (Cerrado), making irrigation feasible and contributing to the economic development and social well-being of the population. A lack of information on factors, such as evaporative water loss, has a... ver más
Revista: Water

 
Saher Ayyad, Islam S. Al Zayed, Van Tran Thi Ha and Lars Ribbe    
Monitoring of crop water consumption, also known as actual evapotranspiration (ETa), is crucial for the prudent use of limited freshwater resources. Remote-sensing-based algorithms have become a popular approach for providing spatio-temporal information ... ver más
Revista: Water