Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Information  /  Vol: 13 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

A Reinforcement Learning Approach to Speech Coding

Jerry Gibson and Hoontaek Oh    

Resumen

Speech coding is an essential technology for digital cellular communications, voice over IP, and video conferencing systems. For more than 25 years, the main approach to speech coding for these applications has been block-based analysis-by-synthesis linear predictive coding. An alternative approach that has been less successful is sample-by-sample tree coding of speech. We reformulate this latter approach as a multistage reinforcement learning problem with L step lookahead that incorporates exploration and exploitation to adapt model parameters and to control the speech analysis/synthesis process on a sample-by-sample basis. The minimization of the spectrally shaped reconstruction error to finite depth manages complexity and serves as an effective stand in for the overall subjective evaluation of reconstructed speech quality and intelligibility. Different control policies that attempt to persistently excite the system states and that encourage exploration are studied and evaluated. The resulting methods produce reconstructed speech quality competitive with the most popular speech codec utilized today. This new reinforcement learning formulation provides new insights and opens up new directions for system design and performance improvement.

 Artículos similares

       
 
Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao    
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encounterin... ver más
Revista: Aerospace

 
Bohdan Petryshyn, Serhii Postupaiev, Soufiane Ben Bari and Armantas Ostreika    
The development of autonomous driving models through reinforcement learning has gained significant traction. However, developing obstacle avoidance systems remains a challenge. Specifically, optimising path completion times while navigating obstacles is ... ver más
Revista: Information

 
Yu-Hung Chang, Chien-Hung Liu and Shingchern D. You    
The dynamic flexible job-shop problem (DFJSP) is a realistic and challenging problem that many production plants face. As the product line becomes more complex, the machines may suddenly break down or resume service, so we need a dynamic scheduling frame... ver más
Revista: Information

 
Jinhui Guo, Xiaoli Zhang, Kun Liang and Guoqiang Zhang    
In recent years, the emergence of large-scale language models, such as ChatGPT, has presented significant challenges to research on knowledge graphs and knowledge-based reasoning. As a result, the direction of research on knowledge reasoning has shifted.... ver más
Revista: Applied Sciences

 
Sungwon Moon, Seolwon Koo, Yujin Lim and Hyunjin Joo    
With recent technological advancements, the commercialization of autonomous vehicles (AVs) is expected to be realized soon. However, it is anticipated that a mixed traffic of AVs and human-driven vehicles (HVs) will persist for a considerable period unti... ver más
Revista: Applied Sciences