Resumen
The effective detection of driver drowsiness is an important measure to prevent traffic accidents. Most existing drowsiness detection methods only use a single facial feature to identify fatigue status, ignoring the complex correlation between fatigue features and the time information of fatigue features, and this reduces the recognition accuracy. To solve these problems, we propose a driver sleepiness estimation model based on factorized bilinear feature fusion and a long- short-term recurrent convolutional network to detect driver drowsiness efficiently and accurately. The proposed framework includes three models: fatigue feature extraction, fatigue feature fusion, and driver drowsiness detection. First, we used a convolutional neural network (CNN) to effectively extract the deep representation of eye and mouth-related fatigue features from the face area detected in each video frame. Then, based on the factorized bilinear feature fusion model, we performed a nonlinear fusion of the deep feature representations of the eyes and mouth. Finally, we input a series of fused frame-level features into a long-short-term memory (LSTM) unit to obtain the time information of the features and used the softmax classifier to detect sleepiness. The proposed framework was evaluated with the National Tsing Hua University drowsy driver detection (NTHU-DDD) video dataset. The experimental results showed that this method had better stability and robustness compared with other methods.