Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Information  /  Vol: 14 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Using Genetic Algorithms to Improve Airport Pavement Structural Condition Assessment: Code Development and Case Study

Alessia Donato and David Carfì    

Resumen

In this paper, we propose a new method of optimization based on genetic algorithms using the MATLAB toolbox ?Global Optimization?. The algorithm finds layers moduli of a flexible pavement through the measurement of pavement surface deflections under assigned load conditions. First, the algorithm for the forward calculation is validated, then the algorithm for the back-calculation is proposed, and the results are compared, in the case of airport pavements, with other software using different back-calculation techniques. The goodness of the procedure and the way of managing the algorithm operator is demonstrated by means of positive feedback obtained from the comparison of the results of ELMOD and BackGenetic3D. Moreover, the findings of the analysis prove that, in such an optimization procedure by GA, the best solution is always reached with a low number of generations, generally less than 10, allowing a reduction in the time of calculation and choosing a population big enough to select with good probability, in the initial population, solutions close to the real ones. The code is made available in such a way that the reader can easily apply it to other flexible pavements in the case of fully bonded layers (both for roads and airports). In particular, interested readers can easily modify the algorithm parameters (population number, stop criteria, probability of mutation, cross-over, and reproduction) and the type of fitness function to minimize, together with the geometric and load characteristics (number and thickness of the layers and the range of module variation). The possibility to change the algorithm parameters and the fitness function allows for exploring different scenarios in order to find the best solution in terms of fitness values. It is also possible to intervene in the time of calculation by managing the algorithm?s stopping criteria.

 Artículos similares

       
 
Raymundo Peña-García, Rodolfo Daniel Velázquez-Sánchez, Cristian Gómez-Daza-Argumedo, Jonathan Omega Escobedo-Alva, Ricardo Tapia-Herrera and Jesús Alberto Meda-Campaña    
This research introduces a physics-based identification technique utilizing genetic algorithms. The primary objective is to derive a parametric matrix, denoted as A, describing the time-invariant linear model governing the longitudinal dynamics of an air... ver más
Revista: Aerospace

 
Damir Karabaic, Marko Kr?ulja, Sven Maricic and Lovro Liveric    
The most commonly used subsea pipeline installation method is the S-Lay method. A very important and complex task in an S-Lay installation engineering analysis is to find the optimal pipelay vessel installation configuration for every distinctive pipelin... ver más

 
Ioannis G. Tsoulos and V. N. Stavrou    
In the current research, we consider the solution of dispersion relations addressed to solid state physics by using artificial neural networks (ANNs). Most specifically, in a double semiconductor heterostructure, we theoretically investigate the dispersi... ver más
Revista: Algorithms

 
Sta?a Pu?karic, Mateo Sokac, ?ivana Nincevic, Heliodor Prelesnik and Knut Yngve Børsheim    
In this communication, we present the prototype of a new simulated in situ lab/on-deck incubator, the light spectrum replicator (LSR), and a method for simulating the measured in situ HOCR light spectrum curves in incubation chambers. We developed this s... ver más

 
Shuang Che, Yan Chen, Longda Wang and Chuanfang Xu    
This work discusses the electric vehicle (EV) ordered charging planning (OCP) optimization problem. To address this issue, an improved dual-population genetic moth?flame optimization (IDPGMFO) is proposed. Specifically, to obtain an appreciative solution... ver más
Revista: Algorithms