Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Information  /  Vol: 14 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data

Xinyu Wang and Yingjie Xiao    

Resumen

The rapid growth of ship traffic leads to traffic congestion, which causes maritime accidents. Accurate ship trajectory prediction can improve the efficiency of navigation and maritime traffic safety. Previous studies have focused on developing a ship trajectory prediction model using a deep learning approach, such as a long short-term memory (LSTM) network. However, a convolutional neural network (CNN) has rarely been applied to extract the potential correlation among different variables (e.g., longitude, latitude, speed, course over ground, etc.). Therefore, this study proposes a deep-learning-based ship trajectory prediction model (namely, CNN-LSTM-SE) that considers the potential correlation of variables and temporal characteristics. This model integrates a CNN module, an LSTM module and a squeeze-and-excitation (SE) module. The CNN module is utilized to extract data on the relationship among different variables (e.g., longitude, latitude, speed and course over ground), the LSTM module is applied to capture temporal dependencies, and the SE module is introduced to adaptively adjust the importance of channel features and focus on the more significant ones. Comparison experiments of two cargo ships at a time interval of 10 s show that the proposed CNN-LSTM-SE model can obtain the best prediction performance compared with other models on evaluation indexes of average root mean squared error (ARMSE), average mean absolute percentage error (AMAPE), average Euclidean distance (AED), average ground distance (AGD) and Fréchet distance (FD).

 Artículos similares

       
 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences