Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 3 Par: 3 (2012)  /  Artículo
ARTÍCULO
TITULO

A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels

Uttam Kumar    
Kumar S. Raja    
Chiranjit Mukhopadhyay and T.V. Ramachandra    

Resumen

Signals acquired by sensors in the real world are non-linear combinations, requiring non-linear mixture models to describe the resultant mixture spectra for the endmember?s (pure pixel?s) distribution. This communication discusses inferring class fraction through a novel hybrid mixture model (HMM). HMM is a three-step process, where the endmembers are first derived from the images themselves using the N-FINDR algorithm. These endmembers are used by the linear mixture model (LMM) in the second step that provides an abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual ground proportions are fed into neural network based multi-layer perceptron (MLP) architecture as input to train the neurons. The neural output further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. HMM is first implemented and validated on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data with a spatial resolution of 250 m. The results on computer simulated data show that the method gives acceptable results for unmixing pixels with an overall RMSE of 0.0089 ± 0.0022 with LMM and 0.0030 ± 0.0001 with the HMM when compared to actual class proportions. The unmixed MODIS images showed overall RMSE with HMM as 0.0191 ± 0.022 as compared to the LMM output considered alone that had an overall RMSE of 0.2005 ± 0.41, indicating that individual class abundances obtained from HMM are very close to the real observations.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Gulsum Alicioglu and Bo Sun    
Deep learning (DL) models have achieved state-of-the-art performance in many domains. The interpretation of their working mechanisms and decision-making process is essential because of their complex structure and black-box nature, especially for sensitiv... ver más
Revista: AI

 
Ramez M. Elmasry, Mohamed A. Abd El Ghany, Mohammed A.-M. Salem and Omar M. Fahmy    
Human behavior is regarded as one of the most complex notions present nowadays, due to the large magnitude of possibilities. These behaviors and actions can be distinguished as normal and abnormal. However, abnormal behavior is a vast spectrum, so in thi... ver más
Revista: AI

 
Miniyenkosi Ngcukayitobi, Lagouge Kwanda Tartibu and Flávio Bannwart    
Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into th... ver más
Revista: AI

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences