Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 3 Par: 3 (2012)  /  Artículo
ARTÍCULO
TITULO

A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels

Uttam Kumar    
Kumar S. Raja    
Chiranjit Mukhopadhyay and T.V. Ramachandra    

Resumen

Signals acquired by sensors in the real world are non-linear combinations, requiring non-linear mixture models to describe the resultant mixture spectra for the endmember?s (pure pixel?s) distribution. This communication discusses inferring class fraction through a novel hybrid mixture model (HMM). HMM is a three-step process, where the endmembers are first derived from the images themselves using the N-FINDR algorithm. These endmembers are used by the linear mixture model (LMM) in the second step that provides an abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual ground proportions are fed into neural network based multi-layer perceptron (MLP) architecture as input to train the neurons. The neural output further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. HMM is first implemented and validated on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data with a spatial resolution of 250 m. The results on computer simulated data show that the method gives acceptable results for unmixing pixels with an overall RMSE of 0.0089 ± 0.0022 with LMM and 0.0030 ± 0.0001 with the HMM when compared to actual class proportions. The unmixed MODIS images showed overall RMSE with HMM as 0.0191 ± 0.022 as compared to the LMM output considered alone that had an overall RMSE of 0.2005 ± 0.41, indicating that individual class abundances obtained from HMM are very close to the real observations.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen    
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)... ver más
Revista: Information

 
Nils Hütten, Miguel Alves Gomes, Florian Hölken, Karlo Andricevic, Richard Meyes and Tobias Meisen    
Quality assessment in industrial applications is often carried out through visual inspection, usually performed or supported by human domain experts. However, the manual visual inspection of processes and products is error-prone and expensive. It is ther... ver más

 
Jih-Ching Chiu, Guan-Yi Lee, Chih-Yang Hsieh and Qing-You Lin    
In computer vision and image processing, the shift from traditional cameras to emerging sensing tools, such as gesture recognition and object detection, addresses privacy concerns. This study navigates the Integrated Sensing and Communication (ISAC) era,... ver más