Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Information  /  Vol: 10 Par: 4 (2019)  /  Artículo
ARTÍCULO
TITULO

Deep Image Similarity Measurement Based on the Improved Triplet Network with Spatial Pyramid Pooling

Xinpan Yuan    
Qunfeng Liu    
Jun Long    
Lei Hu and Yulou Wang    

Resumen

Image similarity measurement is a fundamental problem in the field of computer vision. It is widely used in image classification, object detection, image retrieval, and other fields, mostly through Siamese or triplet networks. These networks consist of two or three identical branches of convolutional neural network (CNN) and share their weights to obtain the high-level image feature representations so that similar images are mapped close to each other in the feature space, and dissimilar image pairs are mapped far from each other. Especially, the triplet network is known as the state-of-the-art method on image similarity measurement. However, the basic CNN can only handle fixed-size images. If we obtain a fixed size image via cutting or scaling, the information of the image will be lost and the recognition accuracy will be reduced. To solve the problem, this paper has proposed the triplet spatial pyramid pooling network (TSPP-Net) through combing the triplet convolution neural network with the spatial pyramid pooling. Additionally, we propose an improved triplet loss function, so that the network model can realize twice distance learning by only inputting three samples at one time. Through the theoretical analysis and experiments, it is proved that the TSPP-Net model and the improved triple loss function can improve the generalization ability and the accuracy of image similarity measurement algorithm.

 Artículos similares

       
 
Bo Zhao, Qifan Zhang, Yangchun Liu, Yongzhi Cui and Baixue Zhou    
In response to the need for precision and intelligence in the assessment of transplanting machine operation quality, this study addresses challenges such as low accuracy and efficiency associated with manual observation and random field sampling for the ... ver más
Revista: Applied Sciences

 
Chih-Yung Chen, Shang-Feng Lin, Yuan-Wei Tseng, Zhe-Wei Dong and Cheng-Han Cai    
Remote coffee grinder burr wear level assessment system.
Revista: Applied Sciences

 
Jingxiong Lei, Xuzhi Liu, Haolang Yang, Zeyu Zeng and Jun Feng    
High-resolution remote sensing images (HRRSI) have important theoretical and practical value in urban planning. However, current segmentation methods often struggle with issues like blurred edges and loss of detailed information due to the intricate back... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences