Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Information  /  Vol: 14 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Extreme Learning Machine-Enabled Coding Unit Partitioning Algorithm for Versatile Video Coding

Xiantao Jiang    
Mo Xiang    
Jiayuan Jin and Tian Song    

Resumen

The versatile video coding (VVC) standard offers improved coding efficiency compared to the high efficiency video coding (HEVC) standard in multimedia signal coding. However, this increased efficiency comes at the cost of increased coding complexity. This work proposes an efficient coding unit partitioning algorithm based on an extreme learning machine (ELM), which can reduce the coding complexity while ensuring coding efficiency. Firstly, the coding unit size decision is modeled as a classification problem. Secondly, an ELM classifier is trained to predict the coding unit size. In the experiment, the proposed approach is verified based on the VVC reference model. The results show that the proposed method can reduce coding complexity significantly, and good image quality can be obtained.

 Artículos similares