Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Information  /  Vol: 11 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

Electoral and Public Opinion Forecasts with Social Media Data: A Meta-Analysis

Marko M. Skoric    
Jing Liu and Kokil Jaidka    

Resumen

In recent years, many studies have used social media data to make estimates of electoral outcomes and public opinion. This paper reports the findings from a meta-analysis examining the predictive power of social media data by focusing on various sources of data and different methods of prediction; i.e., (1) sentiment analysis, and (2) analysis of structural features. Our results, based on the data from 74 published studies, show significant variance in the accuracy of predictions, which were on average behind the established benchmarks in traditional survey research. In terms of the approaches used, the study shows that machine learning-based estimates are generally superior to those derived from pre-existing lexica, and that a combination of structural features and sentiment analyses provides the most accurate predictions. Furthermore, our study shows some differences in the predictive power of social media data across different levels of political democracy and different electoral systems. We also note that since the accuracy of election and public opinion forecasts varies depending on which statistical estimates are used, the scientific community should aim to adopt a more standardized approach to analyzing and reporting social media data-derived predictions in the future.

 Artículos similares

       
 
Hao Liu, Bo Yang and Zhiwen Yu    
Multimodal sarcasm detection is a developing research field in social Internet of Things, which is the foundation of artificial intelligence and human psychology research. Sarcastic comments issued on social media often imply people?s real attitudes towa... ver más
Revista: Applied Sciences

 
Jose Luis Vieira Sobrinho, Flavio Henrique Teles Vieira and Alisson Assis Cardoso    
The high dimensionality of real-life datasets is one of the biggest challenges in the machine learning field. Due to the increased need for computational resources, the higher the dimension of the input data is, the more difficult the learning task will ... ver más
Revista: Applied Sciences

 
David Hanny and Bernd Resch    
With the vast amount of social media posts available online, topic modeling and sentiment analysis have become central methods to better understand and analyze online behavior and opinion. However, semantic and sentiment analysis have rarely been combine... ver más
Revista: Information

 
Aokun Chen, Yunpeng Zhao, Yi Zheng, Hui Hu, Xia Hu, Jennifer N. Fishe, William R. Hogan, Elizabeth A. Shenkman, Yi Guo and Jiang Bian    
It is prudent to take a unified approach to exploring how contextual social determinants of health (SDoH) relate to COVID-19 occurrence and outcomes. Poor geographically represented data and a small number of contextual SDoH examined in most previous res... ver más
Revista: Informatics

 
Milos Poliak, Jan Benus, Jaroslav Mazanec and Mikulas Cerny    
To achieve the elimination of the negative impacts of transport on road safety, the European Union is taking various measures resulting from its commitment to improve road safety. The main objective of this paper is to assess the impact of social legisla... ver más
Revista: Applied Sciences