Resumen
Instantaneous mega-traffic flow has long been one of the major challenges in the management of mega-cities. It is difficult for the public transportation system to cope directly with transient mega-capacity flows, and the uneven spatiotemporal distribution of demand is the main cause. To this end, this paper proposed a customized shuttle bus transportation model based on the ?boarding-transfer-alighting? framework, with the goal of minimizing operational costs and maximizing service quality to address mega-transit demand with uneven spatiotemporal distribution. The fleet application is constructed by a pickup and delivery problem with time window and transfer (PDPTWT) model, and a heuristic algorithm based on Tabu Search and ALNS is proposed to solve the large-scale computational problem. Numerical tests show that the proposed algorithm has the same accuracy as the commercial solution software, but has a higher speed. When the demand size is 10, the proposed algorithm can save 24,000 times of time. In addition, 6 reality-based cases are presented, and the results demonstrate that the designed option can save 9.93% of fleet cost, reduce 45.27% of vehicle waiting time, and 33.05% of passenger waiting time relative to other existing customized bus modes when encountering instantaneous passenger flows with time and space imbalance.