Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Informatics  /  Vol: 5 Par: 1 (2018)  /  Artículo
ARTÍCULO
TITULO

Utilizing Provenance in Reusable Research Objects

Zhihao Yuan    
Dai Hai Ton That    
Siddhant Kothari    
Gabriel Fils and Tanu Malik    

Resumen

Science is conducted collaboratively, often requiring the sharing of knowledge about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. Computational provenance is often the key to enable such reuse. In this paper, we show how reusable research objects can utilize provenance to correctly repeat a previous reference execution, to construct a subset of a research object for partial reuse, and to reuse existing contents of a research object for modified reuse. We describe two methods to summarize provenance that aid in understanding the contents and past executions of a research object. The first method obtains a process-view by collapsing low-level system information, and the second method obtains a summary graph by grouping related nodes and edges with the goal to obtain a graph view similar to application workflow. Through detailed experiments, we show the efficacy and efficiency of our algorithms.

 Artículos similares

       
 
Tse-Chuan Hsu    
With the rapid development of the Internet of Things (IoT) in recent years, many IoT devices use communication systems to transmit data. Data packets are inevitably at risk of tampering during data transmission, which can lead to information errors and d... ver más
Revista: Applied Sciences

 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Jin Su Kim, Cheol Ho Song, Jae Myung Kim, Jimin Lee, Yeong-Hyeon Byeon, Jaehyo Jung, Hyun-Sik Choi, Keun-Chang Kwak, Youn Tae Kim, EunSang Bak and Sungbum Pan    
Current advancements in biosignal-based user recognition technology are paving the way for a next-generation solution that addresses the limitations of face- and fingerprint-based user recognition methods. However, existing biosignal benchmark databases ... ver más
Revista: Applied Sciences

 
Antonello Pasini and Stefano Amendola    
Neural network models are often used to analyse non-linear systems; here, in cases of small datasets, we review our complementary approach to deep learning with the purpose of highlighting the importance and roles (linear, non-linear or threshold) of cer... ver más
Revista: Applied Sciences

 
Hao Liu, Bo Yang and Zhiwen Yu    
Multimodal sarcasm detection is a developing research field in social Internet of Things, which is the foundation of artificial intelligence and human psychology research. Sarcastic comments issued on social media often imply people?s real attitudes towa... ver más
Revista: Applied Sciences