Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Information  /  Vol: 12 Par: 5 (2021)  /  Artículo
ARTÍCULO
TITULO

A Machine Learning Approach for the Tune Estimation in the LHC

Leander Grech    
Gianluca Valentino and Diogo Alves    

Resumen

The betatron tune in the Large Hadron Collider (LHC) is measured using a Base-Band Tune (BBQ) system. The processing of these BBQ signals is often perturbed by 50 Hz noise harmonics present in the beam. This causes the tune measurement algorithm, currently based on peak detection, to provide incorrect tune estimates during the acceleration cycle with values that oscillate between neighbouring harmonics. The LHC tune feedback (QFB) cannot be used to its full extent in these conditions as it relies on stable and reliable tune estimates. In this work, we propose new tune estimation algorithms, designed to mitigate this problem through different techniques. As ground-truth of the real tune measurement does not exist, we developed a surrogate model, which allowed us to perform a comparative analysis of a simple weighted moving average, Gaussian Processes and different deep learning techniques. The simulated dataset used to train the deep models was also improved using a variant of Generative Adversarial Networks (GANs) called SimGAN. In addition, we demonstrate how these methods perform with respect to the present tune estimation algorithm.

Palabras claves

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences