Resumen
In general, automation involves less human intervention, which leads to dependence on preprogrammed machines and processes that operate continually and carry out numerous tasks. This leads to predictable repeating behavior that can be used to advantage. Due to the incorporation of the Internet of Things into such automated processes, these cyber?physical systems are now vulnerable to cyberattacks, the patterns of which can be difficult to identify and understand. Wastewater treatment plants (WTPs) can be challenging to run, but the treatment process is essential since drinking water and water that can be recycled are extremely important to obtain. The increasing susceptibility of WTPs to cyberattacks brought on by exploitation of their weaknesses poses a further challenge. Understanding system weaknesses and potential exploits is necessary for securing such cyber?physical systems. An attack graph utilization and visualization approach for WTPs is presented in this paper. A formal modeling and encoding of the system were carried out using a structural framework (AADL). The system model was then continuously checked by a model-checker called JKind against security requirements to create attack routes, which were then merged into an attack graph using a tool called GraphViz.