Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 10 Par: 4 (2019)  /  Artículo
ARTÍCULO
TITULO

Learning Improved Semantic Representations with Tree-Structured LSTM for Hashtag Recommendation: An Experimental Study

Rui Zhu    
Delu Yang and Yang Li    

Resumen

A hashtag is a type of metadata tag used on social networks, such as Twitter and other microblogging services. Hashtags indicate the core idea of a microblog post and can help people to search for specific themes or content. However, not everyone tags their posts themselves. Therefore, the task of hashtag recommendation has received significant attention in recent years. To solve the task, a key problem is how to effectively represent the text of a microblog post in a way that its representation can be utilized for hashtag recommendation. We study two major kinds of text representation methods for hashtag recommendation, including shallow textual features and deep textual features learned by deep neural models. Most existing work tries to use deep neural networks to learn microblog post representation based on the semantic combination of words. In this paper, we propose to adopt Tree-LSTM to improve the representation by combining the syntactic structure and the semantic information of words. We conduct extensive experiments on two real world datasets. The experimental results show that deep neural models generally perform better than traditional methods. Specially, Tree-LSTM achieves significantly better results on hashtag recommendation than standard LSTM, with a 30% increase in F1-score, which indicates that it is promising to utilize syntactic structure in the task of hashtag recommendation.

 Artículos similares

       
 
Yongbo Liu, Peng He, Yan Cao, Conghua Zhu and Shitao Ding    
A critical precondition for realizing mechanized transplantation in rice cultivation is the implementation of seedling tray techniques. To augment the efficacy of seeding, a precise evaluation of the quality of rice seedling cultivation in these trays is... ver más
Revista: Applied Sciences

 
Mingxin Zou, Yanqing Zhou, Xinhua Jiang, Julin Gao, Xiaofang Yu and Xuelei Ma    
Field manual labor behavior recognition is an important task that applies deep learning algorithms to industrial equipment for capturing and analyzing people?s behavior during field labor. In this study, we propose a field manual labor behavior recogniti... ver más
Revista: Applied Sciences

 
Jiaming Bian, Ye Liu and Jun Chen    
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network?s performance ... ver más
Revista: Applied Sciences

 
Zihao Zhu and Yonghua Xie    
Black soil plays an important role in maintaining a healthy ecosystem, promoting high-yield and efficient agricultural production, and conserving soil resources. In this paper, a typical black soil area of Keshan Farm in Qiqihar City, Heilongjiang Provin... ver más
Revista: Applied Sciences

 
Jie Zhang, Fan Li, Xin Zhang, Yue Cheng and Xinhong Hei    
As a crucial task for disease diagnosis, existing semi-supervised segmentation approaches process labeled and unlabeled data separately, ignoring the relationships between them, thereby limiting further performance improvements. In this work, we introduc... ver más
Revista: Applied Sciences