Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Multiple Droplet Contamination Detector for Vision Systems Using a You Only Look Once Algorithm

Youngkwang Kim    
Woochan Kim    
Jungwoo Yoon    
Sangkug Chung and Daegeun Kim    

Resumen

This paper presents a practical contamination detection system for camera lenses using image analysis with deep learning. The proposed system can detect contamination in camera digital images through contamination learning utilizing deep learning, and it aims to prevent performance degradation of intelligent vision systems due to lens contamination in cameras. This system is based on the object detection algorithm YOLO (v5n, v5s, v5m, v5l, and v5x), which is trained with 4000 images captured under different lighting and background conditions. The trained models showed that the average precision improves as the algorithm size increases, especially for YOLOv5x, which showed excellent efficiency in detecting droplet contamination within 23 ms. They also achieved an average precision (mAP@0.5) of 87.46%, recall (mAP@0.5:0.95) of 51.90%, precision of 90.28%, recall of 81.47%, and F1 score of 85.64%. As a proof of concept, we demonstrated the identification and removal of contamination on camera lenses by integrating a contamination detection system and a transparent heater-based cleaning system. The proposed system is anticipated to be applied to autonomous driving systems, public safety surveillance cameras, environmental monitoring drones, etc., to increase operational safety and reliability.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms