Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Information  /  Vol: 13 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Convolutional Neural Network Model Compression Method for Software?Hardware Co-Design

Seojin Jang    
Wei Liu and Yongbeom Cho    

Resumen

Owing to their high accuracy, deep convolutional neural networks (CNNs) are extensively used. However, they are characterized by high complexity. Real-time performance and acceleration are required in current CNN systems. A graphics processing unit (GPU) is one possible solution to improve real-time performance; however, its power consumption ratio is poor owing to high power consumption. By contrast, field-programmable gate arrays (FPGAs) have lower power consumption and flexible architecture, making them more suitable for CNN implementation. In this study, we propose a method that offers both the speed of CNNs and the power and parallelism of FPGAs. This solution relies on two primary acceleration techniques?parallel processing of layer resources and pipelining within specific layers. Moreover, a new method is introduced for exchanging domain requirements for speed and design time by implementing an automatic parallel hardware?software co-design CNN using the software-defined system-on-chip tool. We evaluated the proposed method using five networks?MobileNetV1, ShuffleNetV2, SqueezeNet, ResNet-50, and VGG-16?and FPGA processors?ZCU102. We experimentally demonstrated that our design has a higher speed-up than the conventional implementation method. The proposed method achieves 2.47×, 1.93×, and 2.16× speed-up on the ZCU102 for MobileNetV1, ShuffleNetV2, and SqueezeNet, respectively.

 Artículos similares

       
 
Pavlo Maruschak, Ihor Konovalenko, Yaroslav Osadtsa, Volodymyr Medvid, Oleksandr Shovkun, Denys Baran, Halyna Kozbur and Roman Mykhailyshyn    
Modern neural networks have made great strides in recognising objects in images and are widely used in defect detection. However, the output of a neural network strongly depends on both the training dataset and the conditions under which the image was ac... ver más
Revista: Applied Sciences

 
Binghui Zhao, Liguo Han, Pan Zhang, Qiang Feng and Liyun Ma    
In passive seismic exploration, the number and location of underground sources are very random, and there may be few passive sources or an uneven spatial distribution. The random distribution of seismic sources can cause the virtual shot recordings to pr... ver más
Revista: Applied Sciences

 
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences

 
Guoqing Dong, Weirong Li, Zhenzhen Dong, Cai Wang, Shihao Qian, Tianyang Zhang, Xueling Ma, Lu Zou, Keze Lin and Zhaoxia Liu    
The developed prototype provides a more efficient and accurate solution for classifying dynagraph cards, meeting the requirements of oil field operations and enhancing economic benefits and work efficiency.
Revista: Applied Sciences

 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences