Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Informatics  /  Vol: 8 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Computer Vision and Machine Learning for Tuna and Salmon Meat Classification

Erika Carlos Medeiros    
Leandro Maciel Almeida and José Gilson de Almeida Teixeira Filho    

Resumen

Aquatic products are popular among consumers, and their visual quality used to be detected manually for freshness assessment. This paper presents a solution to inspect tuna and salmon meat from digital images. The solution proposes hardware and a protocol for preprocessing images and extracting parameters from the RGB, HSV, HSI, and L*a*b* spaces of the collected images to generate the datasets. Experiments are performed using machine learning classification methods. We evaluated the AutoML models to classify the freshness levels of tuna and salmon samples through the metrics of: accuracy, receiver operating characteristic curve, precision, recall, f1-score, and confusion matrix (CM). The ensembles generated by AutoML, for both tuna and salmon, reached 100% in all metrics, noting that the method of inspection of fish freshness from image collection, through preprocessing and extraction/fitting of features showed exceptional results when datasets were subjected to the machine learning models. We emphasize how easy it is to use the proposed solution in different contexts. Computer vision and machine learning, as a nondestructive method, were viable for external quality detection of tuna and salmon meat products through its efficiency, objectiveness, consistency, and reliability due to the experiments? high accuracy.

 Artículos similares

       
 
Aravind Kolli, Qi Wei and Stephen A. Ramsey    
In this work, we explored computational methods for analyzing a color digital image of a wound and predicting (from the analyzed image) the number of days it will take for the wound to fully heal. We used a hybrid computational approach combining deep ne... ver más
Revista: Computation

 
Sotirios Kontogiannis, Myrto Konstantinidou, Vasileios Tsioukas and Christos Pikridas    
In viticulture, downy mildew is one of the most common diseases that, if not adequately treated, can diminish production yield. However, the uncontrolled use of pesticides to alleviate its occurrence can pose significant risks for farmers, consumers, and... ver más
Revista: Information

 
Gonçalo J. M. Rosa, João M. S. Afonso, Pedro D. Gaspar, Vasco N. G. J. Soares and João M. L. P. Caldeira    
Pedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do n... ver más
Revista: Information

 
Yang Zhang, Yuan Feng, Shiqi Wang, Zhicheng Tang, Zhenduo Zhai, Reid Viegut, Lisa Webb, Andrew Raedeke and Yi Shang    
Waterfowl populations monitoring is essential for wetland conservation. Lately, deep learning techniques have shown promising advancements in detecting waterfowl in aerial images. In this paper, we present performance evaluation of several popular superv... ver más
Revista: Information

 
Weiming Fan, Jiahui Yu and Zhaojie Ju    
Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts. Nevertheless, the recent strides in deep learning technologies proffer... ver más
Revista: Information