Resumen
Internet of Things comprises an increasing number of interconnected smart devices, where communication happens anytime, anywhere, reducing hardware costs and the complexity of the architectures. Reading Radio Frequency Identification tags using ultra high frequency is a high-cost activity because of its infrastructure and the radio frequency identification tag reading device for these frequencies. This work proposes an architecture that enables the cost reduction of Radio Frequency Identification tag reading equipment operating ultra high frequency in an infrastructure using cloud computing and microservices. The use of cloud computing and microservices was necessary due to scalability and the management of large volumes of data that can be generated by reading Radio Frequency Identification tags using ultra high frequency and the complexity of the architecture related to the theme of this work. The proposed architecture was applied in a real case study to verify its adherence and compliance. The proposed architecture can be used in any system that presents similar characteristics to the one proposed in this work. In scenarios where reading distance is a fundamental requirement, it is necessary to include an external antenna for better results. Other practical experiments will be carried out to evaluate the use of the proposed architecture in other contexts related to the use of Internet of Things and reading of Radio Frequency Identification tags.