Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Information  /  Vol: 13 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

A Spatial Distribution Empirical Model of Surface Soil Water Content and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications

Harry Imantho    
Kudang Boro Seminar    
Wawan Hermawan and Satyanto Krido Saptomo    

Resumen

Obtaining soil water content and soil workability data using remote sensing technology with passive sensors has some limitations due to cloud cover, cloud shadow, haze and smoke. This study proposes a method for computing soil water content and soil workability over large areas, faster and in near real-time based on Sentinel-1A (SAR) data. Sample data collected from sugarcane plantations in the Kediri and Sidoarjo districts in East Java, Indonesia, were used to develop a mathematical model of the proposed method using multi-polynomial regression. The performance indicators of the model (RMSE, MAPE and accuracy) were calculated with the results of RMSE = 0.213 and 0.250, MAPE = 16.39% and 18.79%, and accuracy = 83.6% and 81.2% for the training and testing models, respectively. The distribution of soil water content and soil workability can be computed and visualized using a spatial map. The future contribution of this work is to develop a decision support system for the selection of appropriate machinery for sugarcane field operations based on the principles of precision agriculture.

 Artículos similares

       
 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Hosang Han and Jangwon Suh    
The accurate prediction of soil contamination in abandoned mining areas is necessary to address their environmental risks. This study employed a combined model of machine learning and geostatistics to predict the spatial distribution of soil contaminatio... ver más
Revista: Applied Sciences

 
Davide Fronzi, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini and Alberto Tazioli    
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at var... ver más
Revista: Water

 
Shu Zhang, Yong Zhang, Gang Huang, Bo Zhang, Yichan Li, Xin Chen, Junkang Xu and Yujie Wei    
Granites, widely distributed in the Earth?s crust, undergo pedogenic processes, shaping diverse soil-mantled landscapes influenced by climatic factors in different regions. Investigating the geochemical signatures in granite weathering profiles across va... ver más
Revista: Water

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water