Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 14 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

BGP Dataset-Based Malicious User Activity Detection Using Machine Learning

Hansol Park    
Kookjin Kim    
Dongil Shin and Dongkyoo Shin    

Resumen

Recent advances in the Internet and digital technology have brought a wide variety of activities into cyberspace, but they have also brought a surge in cyberattacks, making it more important than ever to detect and prevent cyberattacks. In this study, a method is proposed to detect anomalies in cyberspace by consolidating BGP (Border Gateway Protocol) data into numerical data that can be trained by machine learning (ML) through a tokenizer. BGP data comprise a mix of numeric and textual data, making it challenging for ML models to learn. To convert the data into a numerical format, a tokenizer, a preprocessing technique from Natural Language Processing (NLP), was employed. This process goes beyond merely replacing letters with numbers; its objective is to preserve the patterns and characteristics of the data. The Synthetic Minority Over-sampling Technique (SMOTE) was subsequently applied to address the issue of imbalanced data. Anomaly detection experiments were conducted on the model using various ML algorithms such as One-Class Support Vector Machine (One-SVM), Convolutional Neural Network?Long Short-Term Memory (CNN?LSTM), Random Forest (RF), and Autoencoder (AE), and excellent performance in detection was demonstrated. In experiments, it performed best with the AE model, with an F1-Score of 0.99. In terms of the Area Under the Receiver Operating Characteristic (AUROC) curve, good performance was achieved by all ML models, with an average of over 90%. Improved cybersecurity is expected to be contributed by this research, as it enables the detection and monitoring of cyber anomalies from malicious users through BGP data.

 Artículos similares

       
 
Fhrizz S. De Jesus, Lyka Mae L. Fajardo     Pág. 13 - 32
AbstractEmployee development and training programs are critical to the global success of firms. Not only do these programs enable employees to develop new abilities, but they also enable businesses to increase employee productivity and improve company cu... ver más

 
Zain Nawaz, Xin Li, Yingying Chen, Yanlong Guo, Xufeng Wang and Naima Nawaz    
Identifying the changes in precipitation and temperature at a regional scale is of great importance for the quantification of climate change. This research investigates the changes in precipitation and surface air temperature indices in the seven irrigat... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Jae Young Seo and Sang-Il Lee    
Drought is a complex phenomenon caused by lack of precipitation that affects water resources and human society. Groundwater drought is difficult to assess due to its complexity and the lack of spatio-temporal groundwater observations. In this study, we p... ver más
Revista: Water

 
M.H.J.P. Gunarathna, Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii and M.K.N. Kumari    
Poor data availability on soil hydraulic properties in tropical regions hampers many studies, including crop and environmental modeling. The high cost and effort of measurement and the increasing demand for such data have driven researchers to search for... ver más
Revista: Water