Resumen
Radio Frequency (RF) power sensor calibration is one of the essential measurements in RF and microwave metrology. For a reliable and accurate power sensor calibration, there are various methods, such as the substitution method, the direct comparison transfer method (DCTM), and the vector network analyzer (VNA)-based calibration method (VBCM). The VBCM is a method that is derived from the DCTM. It is a preferred method since the VNA has a better measurement capability and has fewer connection requirements for measurement devices. In this study, the milestones and potential application errors of the VBCM are given by considering the connection mistakes, measurement faults, calculation errors, and control software coding problems. At the end of the power sensor calibration measurements with the VBCM, the model function components and the uncertainty calculation examples according to the GUM Bayesian method are also presented in this study. In addition, the advantages and disadvantages of the VBCM compared to the former methods are discussed in this study.