Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Information  /  Vol: 10 Par: 4 (2019)  /  Artículo
ARTÍCULO
TITULO

MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings

Sunghyu Han    

Resumen

In this study, we explore maximum distance separable (MDS) self-dual codes over Galois rings G R ( p m , r ) G R ( p m , r ) with p = - 1 ( mod 4 ) p = - 1 ( mod 4 ) and odd r. Using the building-up construction, we construct MDS self-dual codes of length four and eight over G R ( p m , 3 ) G R ( p m , 3 ) with ( p = 3 p = 3 and m = 2 , 3 , 4 , 5 , 6 m = 2 , 3 , 4 , 5 , 6 ), ( p = 7 p = 7 and m = 2 , 3 m = 2 , 3 ), ( p = 11 p = 11 and m = 2 m = 2 ), ( p = 19 p = 19 and m = 2 m = 2 ), ( p = 23 p = 23 and m = 2 m = 2 ), and ( p = 31 p = 31 and m = 2 m = 2 ). In the building-up construction, it is important to determine the existence of a square matrix U such that U U T = - I U U T = - I , which is called an antiorthogonal matrix. We prove that there is no 2 × 2 2 × 2 antiorthogonal matrix over G R ( 2 m , r ) G R ( 2 m , r ) with m = 2 m = 2 and odd r.