Resumen
Paraphrase detection is a Natural-Language Processing (NLP) task that aims at automatically identifying whether two sentences convey the same meaning (even with different words). For the Portuguese language, most of the works model this task as a machine-learning solution, extracting features and training a classifier. In this paper, following a different line, we explore a graph structure representation and model the paraphrase identification task over a heterogeneous network. We also adopt a back-translation strategy for data augmentation to balance the dataset we use. Our approach, although simple, outperforms the best results reported for the paraphrase detection task in Portuguese, showing that graph structures may capture better the semantic relatedness among sentences.