Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Instruments  /  Vol: 7 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Microwave Photon Emission in Superconducting Circuits

Alessandro D'Elia    
Alessio Rettaroli    
Fabio Chiarello    
Daniele Di Gioacchino    
Emanuele Enrico    
Luca Fasolo    
Carlo Ligi    
Giovanni Maccarrone    
Federica Mantegazzini    
Benno Margesin    
Francesco Mattioli    
Simone Tocci    
Andrea Vinante and Claudio Gatti    

Resumen

Quantum computing requires a novel approach to store data as quantum states, opposite to classical bits. One of the most promising candidates is entangled photons. In this manuscript, we show the photon emission in the range of microwave frequencies of three different types of superconducting circuits, a SQUID, a JPA, and a JTWPA, often used as low-noise parametric amplifiers. These devices can be operated as sources of entangled photons. We report the experimental protocol used to produce and measure microwave radiation from these circuits, as well as data simulations. The collected spectra are obtained by performing single-tone measurements with a direct rf pump on the devices; the output spectra at low powers (below -100 - 100 dBm) are well interpreted by the dynamical Casimir model, while at high powers (above -100 - 100 dBm) the system is well described by the Autler?Townes fluorescence of a three-level atom.

Palabras claves

 Artículos similares