Resumen
The purpose of the paper is to extend the general theory of translation to texts written in the same language and show some possible applications. The main result shows that the mutual mathematical relationships of texts in a language have been saved or lost in translating them into another language and consequently texts have been mathematically distorted. To make objective comparisons, we have defined a ?likeness index??based on probability and communication theory of noisy binary digital channels-and have shown that it can reveal similarities and differences of texts. We have applied the extended theory to the New Testament translations and have assessed how much the mutual mathematical relationships present in the original Greek texts have been saved or lost in 36 languages. To avoid the inaccuracy, due to the small sample size from which the input data (regression lines) are calculated, we have adopted a ?renormalization? based on Monte Carlo simulations whose results we consider as ?experimental?. In general, we have found that in many languages/translations the original linguistic relationships have been lost and texts mathematically distorted. The theory can be applied to texts translated by machines. Because the theory deals with linear regression lines, the concepts of signal-to-noise-ratio and likenss index can be applied any time a scientific/technical problem involves two or more linear regression lines, therefore it is not limited to linguistic variables but it is universal.