Resumen
Automatic Classification of Wireless Signals (ACWS), which is an intermediate step between signal detection and demodulation, is investigated in this paper. ACWS plays a crucial role in several military and non-military applications, by identifying interference sources and adversary attacks, to achieve efficient radio spectrum management. The performance of traditional feature-based (FB) classification approaches is limited due to their specific input feature set, which in turn results in poor generalization under unknown conditions. Therefore, in this paper, a novel feature-based classifier Neural-Induced Support Vector Machine (NSVM) is proposed, in which the features are learned automatically from raw input signals using Convolutional Neural Networks (CNN). The output of NSVM is given by a Gaussian Support Vector Machine (SVM), which takes the features learned by CNN as its input. The proposed scheme NSVM is trained as a single architecture, and in this way, it learns to minimize a margin-based loss instead of cross-entropy loss. The proposed scheme NSVM outperforms the traditional softmax-based CNN modulation classifier by managing faster convergence of accuracy and loss curves during training. Furthermore, the robustness of the NSVM classifier is verified by extensive simulation experiments under the presence of several non-ideal real-world channel impairments over a range of signal-to-noise ratio (SNR) values. The performance of NSVM is remarkable in classifying wireless signals, such as at low signal-to-noise ratio (SNR), the overall averaged classification accuracy is > 97% at SNR = -2 dB and at higher SNR it achieves overall classification accuracy at > 99%, when SNR = 10 dB. In addition to that, the analytical comparison with other studies shows the performance of NSVM is superior over a range of settings.