Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 14 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Image-Based Insect Counting Embedded in E-Traps That Learn without Manual Image Annotation and Self-Dispose Captured Insects

Ioannis Saradopoulos    
Ilyas Potamitis    
Antonios I. Konstantaras    
Panagiotis Eliopoulos    
Stavros Ntalampiras and Iraklis Rigakis    

Resumen

This study describes the development of an image-based insect trap diverging from the plug-in camera insect trap paradigm in that (a) it does not require manual annotation of images to learn how to count targeted pests, and (b) it self-disposes the captured insects, and therefore is suitable for long-term deployment. The device consists of an imaging sensor integrated with Raspberry Pi microcontroller units with embedded deep learning algorithms that count agricultural pests inside a pheromone-based funnel trap. The device also receives commands from the server, which configures its operation, while an embedded servomotor can automatically rotate the detached bottom of the bucket to dispose of dehydrated insects as they begin to pile up. Therefore, it completely overcomes a major limitation of camera-based insect traps: the inevitable overlap and occlusion caused by the decay and layering of insects during long-term operation, thus extending the autonomous operational capability. We study cases that are underrepresented in the literature such as counting in situations of congestion and significant debris using crowd counting algorithms encountered in human surveillance. Finally, we perform comparative analysis of the results from different deep learning approaches (YOLOv7/8, crowd counting, deep learning regression). Interestingly, there is no one optimal clear-cut counting approach that can cover all situations involving small and large insects with overlap. By weighting the pros and cons we suggest that YOLOv7/8 provides the best embedded solution in general. We open-source the code and a large database of Lepidopteran plant pests.

Palabras claves

 Artículos similares

       
 
Gilang Titah Ramadhan, Wahyudi Sutopo and Muhammad Hisjam    
Insect attacks are a very complicated problem in rice cultivation that cause a decrease in rice productivity. It is very important to not use pesticides to kill pests due to environmental and health issues. This study aimed to solve the pest problem by i... ver más

 
Sven Wuertz, Arne Schroeder and Konrad M. Wanka    
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and... ver más
Revista: Water

 
Frank H. Arthur, William R. Morrison III and Stanislav Trdan    
The use of aeration, which refers to cooling of a grain mass using low-volume airflow rates with ambient air, is an under-utilized component of management programs. A model simulation study was conducted for the country of Slovenia by examining historica... ver más
Revista: Applied Sciences

 
Spiridon Mantzoukas and Panagiotis A. Eliopoulos    
Among the non-chemical insect control methods, biological control is one of the most effective human and environmentally friendly alternatives. One of the main biological control methods is the application of entomopathogenic fungi (EPF). Today, biologic... ver más
Revista: Applied Sciences

 
Thanh Tien Dao, Thi Kim Loan Au, Soo Hyung Park and Hoon Cheol Park    
Many previous studies have shown that wing corrugation of an insect wing is only structurally beneficial in enhancing the wing?s bending stiffness and does not much help to improve the aerodynamic performance of flapping wings. This study uses two-dimens... ver más
Revista: Applied Sciences