Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Information  /  Vol: 10 Par: 9 (2019)  /  Artículo
ARTÍCULO
TITULO

Clustering Algorithms and Validation Indices for a Wide mmWave Spectrum

Bogdan Antonescu    
Miead Tehrani Moayyed and Stefano Basagni    

Resumen

Radio channel propagation models for the millimeter wave (mmWave) spectrum are extremely important for planning future 5G wireless communication systems. Transmitted radio signals are received as clusters of multipath rays. Identifying these clusters provides better spatial and temporal characteristics of the mmWave channel. This paper deals with the clustering process and its validation across a wide range of frequencies in the mmWave spectrum below 100 GHz. By way of simulations, we show that in outdoor communication scenarios clustering of received rays is influenced by the frequency of the transmitted signal. This demonstrates the sparse characteristic of the mmWave spectrum (i.e., we obtain a lower number of rays at the receiver for the same urban scenario). We use the well-known k-means clustering algorithm to group arriving rays at the receiver. The accuracy of this partitioning is studied with both cluster validity indices (CVIs) and score fusion techniques. Finally, we analyze how the clustering solution changes with narrower-beam antennas, and we provide a comparison of the cluster characteristics for different types of antennas.

 Artículos similares

       
 
Frank Klawonn and Georg Hoffmann    
Clustering algorithms are usually iterative procedures. In particular, when the clustering algorithm aims to optimise an objective function like in k-means clustering or Gaussian mixture models, iterative heuristics are required due to the high non-linea... ver más
Revista: Algorithms

 
Gulsum Alicioglu and Bo Sun    
Deep learning (DL) models have achieved state-of-the-art performance in many domains. The interpretation of their working mechanisms and decision-making process is essential because of their complex structure and black-box nature, especially for sensitiv... ver más
Revista: AI

 
Zhi Quan, Hailong Zhang, Jiyu Luo and Haijun Sun    
Signal modulation recognition is often reliant on clustering algorithms. The fuzzy c-means (FCM) algorithm, which is commonly used for such tasks, often converges to local optima. This presents a challenge, particularly in low-signal-to-noise-ratio (SNR)... ver más
Revista: Information

 
Liqiu Chen, Chongshi Gu, Sen Zheng and Yanbo Wang    
Real and effective monitoring data are crucial in assessing the structural safety of dams. Gross errors, resulting from manual mismeasurement, instrument failure, or other factors, can significantly impact the evaluation process. It is imperative to elim... ver más
Revista: Water

 
Xuanyuan Xie and Jieyu Zhao    
The diffusion model has made progress in the field of image synthesis, especially in the area of conditional image synthesis. However, this improvement is highly dependent on large annotated datasets. To tackle this challenge, we present the Guided Diffu... ver más
Revista: Algorithms