Resumen
Making smart and informed decisions often requires the integration and analysis of large amounts of data. However, integrating these data is rarely straightforward, mainly because of heterogeneities in data structure and format. In this study, we focus on two widely used data formats by municipalities to store digital maps of their infrastructure: Computer-Aided Design (CAD) and Geographic Information Systems (GIS). While most municipalities still maintain infrastructure data in CAD format, many have started converting them to GIS since GIS includes geographical coordinates. However, the inherent differences between these two formats pose challenges to accurately converting information from CAD to GIS. The main goal of this study is to develop a procedure to help municipalities to perform CAD-to-GIS conversion. To that end, potential problems in CAD-to-GIS conversion were first identified through interviews with practitioners at different U.S. municipalities and through a literature review. Taken together, we propose the C2G framework to streamline the conversion process while minimizing information loss. The framework consists of five stages, and the execution of this framework and tasks involved in each stage are explained. Moreover, we apply the framework to real-world underground stormwater infrastructure data obtained from the University of Illinois at Chicago (UIC) to illustrate the framework?s applicability. The case study explains details about the technical difficulties we encountered in the process and provides recommendations to circumvent those difficulties. The results from the case study showed that the C2G framework was able to successfully convert CAD data to GIS data. Although the framework is developed specific to the needs of CAD/GIS practitioners in the US municipalities, it can be adopted in most CAD-to-GIS conversion situations. The information learned during the interviews supports the need for a standard CAD-to-GIS conversion process. The contribution of this study is to fill this gap by developing a generalized framework to carry out CAD-to-GIS conversion which only requires basic knowledge of CAD and GIS.