Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 7 Par: 1 (2016)  /  Artículo
ARTÍCULO
TITULO

Information Extraction Under Privacy Constraints

Shahab Asoodeh    
Mario Diaz    
Fady Alajaji and Tamás Linder    

Resumen

A privacy-constrained information extraction problem is considered where for a pair of correlated discrete random variables (??,??) ( X , Y ) governed by a given joint distribution, an agent observes Y and wants to convey to a potentially public user as much information about Y as possible while limiting the amount of information revealed about X. To this end, the so-called rate-privacy function is investigated to quantify the maximal amount of information (measured in terms of mutual information) that can be extracted from Y under a privacy constraint between X and the extracted information, where privacy is measured using either mutual information or maximal correlation. Properties of the rate-privacy function are analyzed and its information-theoretic and estimation-theoretic interpretations are presented for both the mutual information and maximal correlation privacy measures. It is also shown that the rate-privacy function admits a closed-form expression for a large family of joint distributions of (??,??) ( X , Y ) . Finally, the rate-privacy function under the mutual information privacy measure is considered for the case where (??,??) ( X , Y ) has a joint probability density function by studying the problem where the extracted information is a uniform quantization of Y corrupted by additive Gaussian noise. The asymptotic behavior of the rate-privacy function is studied as the quantization resolution grows without bound and it is observed that not all of the properties of the rate-privacy function carry over from the discrete to the continuous case.

 Artículos similares

       
 
Chunling Wang, Tianyi Hang, Changke Zhu and Qi Zhang    
The Czech Republic is one of the countries along the Belt and Road Initiative, and classifying land cover in the Czech Republic helps to understand the distribution of its forest resources, laying the foundation for forestry cooperation between China and... ver más
Revista: Applied Sciences

 
Jun Peng and Baohua Su    
The task of aspect-based sentiment analysis (ASBA) is to identify all the sentiment analyses expressed by specific aspect words in the text. How to identify specific objects (i.e., aspect words), describe the modifiers of the specific objects (i.e., opin... ver más
Revista: Applied Sciences

 
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia    
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction... ver más
Revista: Applied Sciences

 
Weijun Li, Jintong Liu, Yuxiao Gao, Xinyong Zhang and Jianlai Gu    
The task of named entity recognition (NER) is to identify entities in the text and predict their categories. In real-life scenarios, the context of the text is often complex, and there may exist nested entities within an entity. This kind of entity is ca... ver más

 
Zongshun Wang, Ce Li, Jialin Ma, Zhiqiang Feng and Limei Xiao    
In this study, we introduce a novel framework for the semantic segmentation of point clouds in autonomous driving scenarios, termed PVI-Net. This framework uniquely integrates three different data perspectives?point clouds, voxels, and distance maps?exec... ver más
Revista: Information