Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Information  /  Vol: 12 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

A Semantic Model for Interchangeable Microservices in Cloud Continuum Computing

Salman Taherizadeh    
Dimitris Apostolou    
Yiannis Verginadis    
Marko Grobelnik and Gregoris Mentzas    

Resumen

The rapid growth of new computing models that exploit the cloud continuum has a big impact on the adoption of microservices, especially in dynamic environments where the amount of workload varies over time or when Internet of Things (IoT) devices dynamically change their geographic location. In order to exploit the true potential of cloud continuum computing applications, it is essential to use a comprehensive set of various intricate technologies together. This complex blend of technologies currently raises data interoperability problems in such modern computing frameworks. Therefore, a semantic model is required to unambiguously specify notions of various concepts employed in cloud applications. The goal of the present paper is therefore twofold: (i) offering a new model, which allows an easier understanding of microservices within adaptive fog computing frameworks, and (ii) presenting the latest open standards and tools which are now widely used to implement each class defined in our proposed model.

 Artículos similares

       
 
Xingxing Tong, Ming Chen and Guofu Feng    
The issue of aquatic product quality and safety has gradually become a focal point of societal concern. Analyzing textual comments from people about aquatic products aids in promptly understanding the current sentiment landscape regarding the quality and... ver más
Revista: Applied Sciences

 
Ruoyang Li, Shuping Xiong, Yinchao Che, Lei Shi, Xinming Ma and Lei Xi    
Semantic segmentation algorithms leveraging deep convolutional neural networks often encounter challenges due to their extensive parameters, high computational complexity, and slow execution. To address these issues, we introduce a semantic segmentation ... ver más
Revista: Algorithms

 
Marie-Therese Charlotte Evans, Majid Latifi, Mominul Ahsan and Julfikar Haider    
Keyword extraction from Knowledge Bases underpins the definition of relevancy in Digital Library search systems. However, it is the pertinent task of Joint Relation Extraction, which populates the Knowledge Bases from which results are retrieved. Recent ... ver más
Revista: Information

 
Carlo Galli, Nikolaos Donos and Elena Calciolari    
Systematic reviews are cumbersome yet essential to the epistemic process of medical science. Finding significant reports, however, is a daunting task because the sheer volume of published literature makes the manual screening of databases time-consuming.... ver más
Revista: Information

 
Radoslaw Piotr Katarzyniak, Grzegorz Popek and Marcin Zurawski    
This article presents a model of an architecture of an artificial cognitive agent that performs the function of generating autoepistemic membership statements used to communicate beliefs about the belonging of an observed external object to a category wi... ver más
Revista: Applied Sciences