Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 19 (2020)  /  Artículo
ARTÍCULO
TITULO

A Numerical Evaluation of Structural Hot-Spot Stress Methods in Rib-To-Deck Joint of Orthotropic Steel Deck

Nouman Iqbal    
Heng Fang    
Ahsan Naseem    
Muhammad Kashif and Hans De Backer    

Resumen

This study numerically investigates the limitations of structural hot-spot stress (SHSS) methods and proposes a guideline for the calculation of hot-spot stresses, which can be used for the better evaluation of fatigue-related problems. Four different SHSS evaluation methods have been applied to the rib-to-deck (RD) welded joint in orthotropic steel deck (OSD). These methods are used to calculate SHSS at this critical joint utilizing finite element analyses (FEA) based software Siemens NX.12. The limitations and the accuracy of these methods have been observed under different element types and meshing techniques. Moreover, the effect of the nodal-averaging feature is being studied. Two types of governing stresses are produced by the application of Eurocode fatigue load model-4. Essentially, the bending in deck-plate produces highly non-linear stress at the deck-toe, and the membrane effect in rib-plate generates linear stress at the rib-toe. Guidelines are proposed considering different parameters on these two stress states by applying SHSS evaluation methods. In comparison to other SHSS approaches, the International Institute of Welding (IIW) quadratic stress extrapolation (QSE) method shows better results for solid single-element, and the American Society of Mechanical Engineers (ASME) through thickness stress linearization (TTSL) method stands out in solid cubic-mesh technique. In general, shell elements have more consistent SHSS results as compared to solid elements for both stress states.

 Artículos similares

       
 
Estefanía Gómez-Gamboa, Jorge Guillermo Díaz-Rodríguez, Jairo Andrés Mantilla-Villalobos, Oscar Rodolfo Bohórquez-Becerra and Manuel del Jesús Martínez    
Revista: Infrastructures

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace

 
M. Domaneschi, R. Cucuzza, L. Sardone, S. Londoño Lopez, M. Movahedi and G. C. Marano    
Random vibration analysis is a mathematical tool that offers great advantages in predicting the mechanical response of structural systems subjected to external dynamic loads whose nature is intrinsically stochastic, as in cases of sea waves, wind pressur... ver más
Revista: Computation

 
Daniel Molinero-Hernández, Sergio R. Galván-González, Nicolás D. Herrera-Sandoval, Pablo Guzman-Avalos, J. Jesús Pacheco-Ibarra and Francisco J. Domínguez-Mota    
Driven by the emergence of Graphics Processing Units (GPUs), the solution of increasingly large and intricate numerical problems has become feasible. Yet, the integration of GPUs into Computational Fluid Dynamics (CFD) codes still presents a significant ... ver más
Revista: Computation

 
Simone Fiori, Francesco Rachiglia, Luca Sabatini and Edoardo Sampaolesi    
The aim of this research paper is to propose a framework to model, simulate and control the motion of a small spacecraft in the proximity of a space station. In particular, rendezvous in the presence of physical obstacles is tackled by a virtual potentia... ver más
Revista: Aerospace