Resumen
In this study, kaolinite, carbon black (CB), iron sulfide (FeS), hydroxyapatite (HAP), and oyster shell powder (OSP) were selected as potentially ideal amendments to immobilize metals in sediment, including Ni, Cr, Cu, Zn, and Hg. In aqueous batch experiments, the five adsorbents were tested for capturing the five potential toxic metals individually at various concentrations. HAP and OSP showed the largest removal efficiencies towards Ni (OSP: 76.47%), Cr (OSP: 100.00%), Cu (HAP: 98.39%), and Zn (HAP: 64.56%), with CB taking the third place. In contrast, FeS and CB played a more significant role in Hg removal (FeS: 100.00%; CB: 86.40%). In the modified six-column microcosm experiments, five mixing ratios based on various considerations using the five adsorbent materials were tested; the water samples were collected and analyzed every week for 135 days. Results showed that caps including CB could immobilize the release of Hg and methylmercury (MeHg) better than those with FeS. More economical caps, namely, with a higher portion of OSP in the mixed capping, could not reach comparable effects to those with more HAP for immobilizing Ni, but performed almost the same for the other four metals. All columns with active caps showed greater metal immobilization as compared to the controlled column without caps.