Resumen
Mobility is experiencing a revolution, as advanced communications, computers with big data capacities, efficient networks of sensors, and signals, are developing value-added applications such as intelligent spaces and autonomous vehicles. Another new technology that is both promising and might even be pervasive for faster, safer and more environmentally-friendly public transport (PT) is the development of autonomous vehicles (AVs). This study aims to understand the state of the current research on the artificially intelligent transportation system (ITS) and AVs through a critical evaluation of peer-reviewed literature. This study?s findings revealed that the majority of existing research (around 82% of studies) focused on AVs. Results show that AVs can potentially reduce more than 80% of pollutant emissions per mile if powered by alternate energy resources (e.g., natural gas, biofuel, electricity, hydrogen cells, etc.). Not only can private vehicle ownership be cut down by bringing in ridesharing but the average vehicle miles travelled (VMT) should also be reduced through improved PT. The main benefits of AV adoption were reported in the literature to be travel time, traffic congestion, cost and environmental factors. Findings revealed barriers such as technological uncertainties, lack of regulation, unawareness among stakeholders and privacy and security concerns, along with the fact that lack of simulation and empirical modelling data from pilot studies limit the application. AV?PT was also found to be the most sustainable strategy in dense urban areas to shift the heavy trip load from private vehicles.