Resumen
Disc seeders are commonly used in no-till farming systems, and their performance evaluation generally rely on expensive and time-consuming field experiments. Mathematical models can help speed up force-related evaluations and improve the understanding of soil-disc interactions, to assist the performance optimisation processes. Previous analytical force prediction models of disc blades have not accounted for the free rotation aspect of the disc blade. This paper develops an analytical force prediction model from the wide blade failure theory adapted to suit rotating flat disc blades operating at different sweep and tilt angles and compares predictions with Discrete Element Method (DEM) simulations. To validate the two models, experiments were performed on a remoulded sandy soil condition using a rotating flat disc set at two tilt angles of 0°" role="presentation" style="position: relative;">°°
°
and 20°," role="presentation" style="position: relative;">°,°,
°
,
and four sweep angles of 6, 26, 45 and 90° the 3-dimensional force components of draught, vertical and side forces were measured. Results showed a higher coefficient of determination (R2 = 0.95) was obtained with analytical model predictions compared to DEM predictions (R2 = 0.85) for their agreement with the test results. It was found that both the developed analytical approach and the DEM model can be used to predict tillage forces at different sweep and tilt angles acting on a rotating flat disc blade.