Resumen
Lighting control systems (LCSs) play important roles in maintaining visual comfort and energy savings in buildings. This paper presents a prototype LCS using LabVIEW with real-time high dynamic range images and a digital multiplex controller to brighten lamps sequentially to provide visual comfort. The prototype is applied to a scaled classroom model with three schemes involving different activities and needs: writing and reading, requiring a uniform luminance of approximately 100 cd/m2, teaching using a whiteboard, requiring an illuminance of approximately 120 cd/m2 for the whiteboard and 60 cd/m2 for the desks, and drawing and art activities focused on the center of the room, requiring an illuminance of approximately 100 cd/m2 for the center area and 50 cd/m2 for the background area. For each scheme, two conditions are presented: one in which the room is treated as a closed room without windows, and the one in which the room has a large window on one wall that enables daylight to penetrate the room. The prototype works well with both schemes and provides different combinations of lamp brightness levels, starting from 10% to 60%, based on the activities and required luminance, and can save around 73?82% of electricity. The presence of daylight does not always result in more energy savings, as the brightness contrast for visual comfort needs to be considered.