Resumen
Work is needed to better understand the control of knee movement and knee health. Specifically, work is needed to further understand knee muscle force control variability and complexity and how it is organized on both sides of the body. The purpose of this study was to explore side-to-side comparisons of magnitude- and complexity-based measures of knee muscle force control to support future interpretations of complexity-based analyses and clinical reasoning in knee injury control. Participants (male/female n = 11/5) performed constant-force isometric efforts at 50% maximal effort. Force variability was quantified during the constant-force efforts using a coefficient of variation (CV%) and force complexity using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) a. Outcomes were right/left and dominant/nondominant group-level and individual-level comparisons. A limb-symmetry index was calculated for each variable and clinically significant absolute asymmetry was defined (>15%). The only significant side-to-side difference was for right/left DFA a (p = 0.00; d = 1.12). Maximum absolute asymmetries were (right/left, dominant/nondominant): CV 18.2%, 18.0%; ApEn 34.5%, 32.3%; DFA a 4.9%, 5.0%. Different side-to-side comparisons yield different findings. Consideration for how side-to-side comparisons are performed (right/left, dominant/nondominant) is required. Because a significant difference existed for complexity but not variability, this indicates that both complexity-based and magnitude-based measures should be used when studying knee muscle force control.