Resumen
This paper is concerned with the problem of fixed-time stabilization for a class of uncertain second-order nonlinear systems. By delicately introducing extra manipulations in the feedback domination and revamping the technique of adding a power integrator, a new approach is developed, by which a state feedback controller, together with a suitable Lyapunov function, which is critical for verifying fixed-time convergence, can be explicitly organized to render the closed-loop system fixed-time stable. The major novelty of this paper is attributed to a subtle strategy that offers a distinct perspective in controller design as well as stability analysis in the problem of fixed-time stabilization for nonlinear systems. Finally, the proposed approach is applied to the attitude stabilization of a spacecraft to demonstrate its merits and effectiveness.