Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Future Internet  /  Vol: 6 Par: 2 (2014)  /  Artículo
ARTÍCULO
TITULO

The Problems and Challenges of Managing Crowd Sourced Audio-Visual Evidence

Harjinder Singh Lallie    

Resumen

A number of recent incidents, such as the Stanley Cup Riots, the uprisings in the Middle East and the London riots have demonstrated the value of crowd sourced audio-visual evidence wherein citizens submit audio-visual footage captured on mobile phones and other devices to aid governmental institutions, responder agencies and law enforcement authorities to confirm the authenticity of incidents and, in the case of criminal activity, to identify perpetrators. The use of such evidence can present a significant logistical challenge to investigators, particularly because of the potential size of data gathered through such mechanisms and the added problems of time-lining disparate sources of evidence and, subsequently, investigating the incident(s). In this paper we explore this problem and, in particular, outline the pressure points for an investigator. We identify and explore a number of particular problems related to the secure receipt of the evidence, imaging, tagging and then time-lining the evidence, and the problem of identifying duplicate and near duplicate items of audio-visual evidence.

 Artículos similares

       
 
Sumet Darapisut, Komate Amphawan, Nutthanon Leelathakul and Sunisa Rimcharoen    
Location-based recommender systems (LBRSs) have exhibited significant potential in providing personalized recommendations based on the user?s geographic location and contextual factors such as time, personal preference, and location categories. However, ... ver más

 
Yu Guo, Guigen Nie, Wenliang Gao and Mi Liao    
Semantic segmentation is a critical task in computer vision that aims to assign each pixel in an image a corresponding label on the basis of its semantic content. This task is commonly referred to as dense labeling because it requires pixel-level classif... ver más
Revista: Future Internet

 
Lang Wu, Weijian Ruan, Jinhui Hu and Yaobin He    
Federated learning (FL) and blockchains exhibit significant commonality, complementarity, and alignment in various aspects, such as application domains, architectural features, and privacy protection mechanisms. In recent years, there have been notable a... ver más
Revista: Future Internet

 
Duc-Thinh Ngo, Ons Aouedi, Kandaraj Piamrat, Thomas Hassan and Philippe Raipin-Parvédy    
As the complexity and scale of modern networks continue to grow, the need for efficient, secure management, and optimization becomes increasingly vital. Digital twin (DT) technology has emerged as a promising approach to address these challenges by provi... ver más
Revista: Future Internet

 
Daniel Spiekermann and Jörg Keller    
While network forensics has matured over the decades and even made progress in the last 10 years when deployed in virtual networks, network forensics in fog and edge computing is still not progressed to that level despite the now widespread use of these ... ver más
Revista: Future Internet