Resumen
Aeolian sand high embankments are always damaged by earthquakes; however, little research has addressed this so far. In this study, shaking table tests were conducted on three aeolian sand high embankment models. Based on the shear failure mechanism of aeolian sand, the seismic responses of model embankments were analyzed. When seismic waves were inputted, the horizontal acceleration magnification (HAM) of three models always exceeded 1.0, and showed an increasing trend with height. Furthermore, according to the HAM change rules of three models under different input peak accelerations, the destruction of model embankments under earthquakes includes three stages: the reflected wave emergence (RWE) stage, the reflected wave strengthening (RWS) stage, and the acceleration magnification attenuation (AMA) stage. According to this definition, models with slopes of 1/1.2 and 1/0.8 experienced all three stages during tests, and the critical horizontal acceleration transform from the RWS stage to the AMA stage appeared. The model with a slope of 1/1.5 only experienced RWE and RWS stages during the test. At the end of the tests, the macroscopic instability mechanisms of all three models were studied, which were found to match the distribution law of HAM during tests and the destruction stage definition.