Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 11 (2021)  /  Artículo
ARTÍCULO
TITULO

Evaluation of the Water Shielding Performance of a Capillary Barrier System through a Small-Scale Model Test

Byeong-Su Kim    

Resumen

Capillary barrier (CB) systems consisting of a fine-grained soil layer placed over a coarse-grained soil layer can generally provide a water-shielding effect, increasing the slope stability of soil structures during rainfall. In order to improve the water-shielding performance of CB systems, laboratory model tests have been previously conducted under various conditions; notably, large-scale model tests are especially required. The inefficiency in increasing the production time of CB models until now explains their high cost. In this paper, we propose a laboratory small-scale CB (SSCB) model test for a quick and efficient evaluation of the function of a CB system. In this model test, differently from previous studies, a side drainage flow in the direction of the inclined sand layer was set as the no-flow condition; moreover, the laboratory SSCB model tests were performed by considering three rainfall intensities (i.e., 20, 50, and 100 mm/h) under the lateral no-flow condition. The results showed that the larger the rainfall intensity, the shorter the diversion length was of the CB system. To evaluate the effectiveness of the SSCB model test proposed in this study, the diversion length was estimated by an empirical equation under the lateral flow condition based on hydraulic conductivity functions and the soil water characteristic curves of sand and gravel and then compared to the results of the SSCB model tests. It was hence demonstrated that the water-shielding performance of the CB system can be efficiently evaluated through SSCB model tests under the lateral no-flow condition, rather than through large-scale model tests.

 Artículos similares

       
 
Young Hwan Choi and Joong Hoon Kim    
This study compares the performance of self-adaptive optimization approaches in efficient water distribution systems (WDS) design and presents a guide for the selection of the appropriate method employing optimization utilizing the characteristic of each... ver más
Revista: Water

 
Viktoriya Tsyganskaya, Sandro Martinis and Philip Marzahn    
Synthetic Aperture Radar (SAR) is particularly suitable for large-scale mapping of inundations, as this tool allows data acquisition regardless of illumination and weather conditions. Precise information about the flood extent is an essential foundation ... ver más
Revista: Water

 
Minychl G. Dersseh, Aron A. Kibret, Seifu A. Tilahun, Abeyou W. Worqlul, Mamaru A. Moges, Dessalegn C. Dagnew, Wubneh B. Abebe and Assefa M. Melesse    
Water hyacinth is a well-known invasive weed in lakes across the world and harms the aquatic environment. Since 2011, the weed has invaded Lake Tana substantially posing a challenge to the ecosystem services of the lake. The major factors which affect th... ver más
Revista: Water

 
Reza Aghlmand and Ali Abbasi    
Increasing water demands, especially in arid and semi-arid regions, continuously exacerbate groundwater resources as the only reliable water resources in these regions. Groundwater numerical modeling can be considered as an effective tool for sustainable... ver más
Revista: Water

 
Masoud Jafari Shalamzari, Wanchang Zhang, Atefeh Gholami and Zhijie Zhang    
Site selection for runoff harvesting at large scales is a very complex task. It requires inclusion and spatial analysis of a multitude of accurately measured parameters in a time-efficient manner. Compared with direct measurements of runoff, which is tim... ver más
Revista: Water