Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied System Innovation  /  Vol: 4 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

IoT-Based Small Scale Anomaly Detection Using Dixon?s Q Test for e-Health Data

Partha Pratim Ray and Dinesh Dash    

Resumen

Anomaly detection in the smart application domain can significantly improve the quality of data processing, especially when the size of a dataset is too small. Internet of Things (IoT) enables the development of numerous applications where sensor-data-aware anomalies can affect the decision making of the underlying system. In this paper, we propose a scheme: IoTDixon, which works on the Dixon?s Q test to identify point anomalies from a simulated normally distributed dataset. The proposed technique involves Q statistics, Kolmogorov?Smirnov test, and partitioning of a given dataset into a specific data packet. The proposed techniques use Q-test to detect point anomalies. We find that value 76.37 is statistically significant where ??=0.012

 Artículos similares