Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Algorithms  /  Vol: 12 Par: 6 (2019)  /  Artículo
ARTÍCULO
TITULO

Learning Output Reference Model Tracking for Higher-Order Nonlinear Systems with Unknown Dynamics

Mircea-Bogdan Radac and Timotei Lala    

Resumen

This work suggests a solution for the output reference model (ORM) tracking control problem, based on approximate dynamic programming. General nonlinear systems are included in a control system (CS) and subjected to state feedback. By linear ORM selection, indirect CS feedback linearization is obtained, leading to favorable linear behavior of the CS. The Value Iteration (VI) algorithm ensures model-free nonlinear state feedback controller learning, without relying on the process dynamics. From linear to nonlinear parameterizations, a reliable approximate VI implementation in continuous state-action spaces depends on several key parameters such as problem dimension, exploration of the state-action space, the state-transitions dataset size, and a suitable selection of the function approximators. Herein, we find that, given a transition sample dataset and a general linear parameterization of the Q-function, the ORM tracking performance obtained with an approximate VI scheme can reach the performance level of a more general implementation using neural networks (NNs). Although the NN-based implementation takes more time to learn due to its higher complexity (more parameters), it is less sensitive to exploration settings, number of transition samples, and to the selected hyper-parameters, hence it is recommending as the de facto practical implementation. Contributions of this work include the following: VI convergence is guaranteed under general function approximators; a case study for a low-order linear system in order to generalize the more complex ORM tracking validation on a real-world nonlinear multivariable aerodynamic process; comparisons with an offline deep deterministic policy gradient solution; implementation details and further discussions on the obtained results.

 Artículos similares

       
 
Pavel V. Matrenin, Valeriy V. Gamaley, Alexandra I. Khalyasmaa and Alina I. Stepanova    
Forecasting the generation of solar power plants (SPPs) requires taking into account meteorological parameters that influence the difference between the solar irradiance at the top of the atmosphere calculated with high accuracy and the solar irradiance ... ver más
Revista: Algorithms

 
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin    
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual... ver más
Revista: AI

 
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia    
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction... ver más
Revista: Applied Sciences

 
Guanwen Zhang and Dongnian Jiang    
Rolling bearings are one of the most important and indispensable components of a mechanical system, and an accurate prediction of their remaining life is essential to ensuring the reliable operation of a mechanical system. In order to effectively utilize... ver más
Revista: Applied Sciences

 
Can Li, Hua Sun, Changhong Wang, Sheng Chen, Xi Liu, Yi Zhang, Na Ren and Deyu Tong    
In order to safeguard image copyrights, zero-watermarking technology extracts robust features and generates watermarks without altering the original image. Traditional zero-watermarking methods rely on handcrafted feature descriptors to enhance their per... ver más
Revista: Applied Sciences