Resumen
The expanding human activities in coastal areas increase the need for developing solutions to limit impacts on the marine environment. Sea disposal affects the marine environment, but despite the growing knowledge of potential impacts, there are still no standardized leaching tests for sea disposal. The aim of this study was to contribute to the development of leaching tests, exemplified using mine tailings, planned for submarine disposal in the Repparfjord, Norway. The mine tailings had elevated concentrations of Ba, Cr, Cu, Mn and Ni compared to background concentrations in the Repparfjord. Variables known to affect metal leaching in marine environments (DOC, pH, salinity, temperature, aerated/anoxic) were studied, as was the effect of flocculant (Magnafloc10), planned to be added prior to discharge. Stirred/non-stirred setups simulated the resuspension and disposal phases. Leaching of metals was below 2% in all experiments, with the highest rate observed for Cu and Mn. Multivariate analysis revealed a different variable importance for metals depending on their association with minerals. Higher leaching during resuspension than disposal, and lower leaching with the addition of Magnafloc10, especially for Cu and Mn, was observed. The leaching tests performed in this study are transferable to other materials for sea disposal.